Тонкости процесса установки солнечных батарей
Установка солнечных батарей: выбор, монтаж, подключение
Еще 50 лет назад, получение электроэнергии от Солнца относилось исключительно к космическим технологиям (как по сложности оборудования, таки и по его стоимости). Сегодня, установка солнечных батарей в индивидуальном порядке стала привычным делом. Панели можно встретить на крышах дачных домиков, на территории фермерских хозяйств, на опорах освещения.
Вопрос «пользоваться или не пользоваться», уже не рассматривается. Потенциальный владелец озабочен лишь расчетом стоимости, мощности и надежности оборудования. О том, какие бывают солнечные батареи, как их правильно выбрать, расскажем в нашем материале.
Принцип работы солнечной батареи
На самом деле, правильное название — фотоэлемент (то есть, фотобатарея). Но поскольку источником света является солнце, прижилось наименование «солнечная батарея».
Элемент представляет собой «бутерброд» и пластинок кремния, разделенных стандартным (для радиодеталей) переходом. Секрет в том, что кремниевые части имеют различный тип:
Такие комплекты применяются практически во всех радиодеталях, изготовленных из кремния.
: Многие из стандартных радиокомпонентов также могут вырабатывать электроэнергию при воздействии яркого света. Просто КПД настолько мизерный, что использовать их в качестве источника тока бессмысленно.
К слою кремния N-типа добавляется фосфор. В состоянии покоя такая смесь дает избыток электронов с естественным отрицательным зарядом.
P-тип «обогащен» бором, что создает дефицит отрицательных зарядов (так называемый эффект электроновых дыр).Соответственно, к N-слою подключается отрицательный электрод (для снятия электротока), а к P-слою — положительный.
Из законов физики мы знаем, что в P/N переходе присутствует электрической поле. Под воздействием на отрицательную панель солнечных фотонов, в переходе происходит интенсивное разделение отрицательных и положительных частиц.
«Минусы» накапливаются в верхнем слое, а «плюсы» в нижнем. В результате, солнечный бутерброд превращается в обычную батарейку с накопленным зарядом. Если к электродам подключить потребителя энергии — возникает электроток.
Естественно, заряд в таком источнике моментально исчезает, но его тут же восстанавливает солнечный свет. Таким образом, пока фотобатарея интенсивно бомбардируется фотонами, мы имеем достаточно производительную мини электростанцию.
Современные батареи могут работать даже при отсутствии прямых солнечных лучей (например, при сплошной облачности). Естественно, интенсивность выработки электроэнергии при этом снижается.
Но при отсутствии света (даже луна не способна «пробудить» батарею), процесс останавливается. Поэтому рассматривать фотопанели отдельно, как источник электроэнергии нельзя.
Схема подключения солнечных батарей обязательно включает в себя буферное устройство: аккумулятор энергии.
Кроме того, вырабатываемый ток нестабилен, поэтому для организации энергоснабжения объекта требуется управляющий контроллер. Разумеется, если вы используете мобильную фотобатарею для подзарядки смартфона в многодневном походе, такие технологии не требуются. А для строительства индивидуальной электростанции требуется комплект периферийных устройств.
Типы солнечных батарей
Генераторы «чистой» энергии классифицируются по типу материала, из которого выполнены элементы:
- Монокристаллические — самый массовый продукт на энергорынке. Для полноценного энергетического обеспечения объекта требуется значительная площадь монтажа. Приоритетная сфера использования — резервные или дублирующие энергосистемы при имеющемся подключении к сети.
- Поликристаллические системы более производительны, и при меньшей площади элементов могут быть использованы в качестве автономной электростанции объекта без централизованного энергоснабжения. Единственный недостаток (он нивелируется в процессе использования), стоимость существенно выше.
- Аморфный кремний — это прорыв в солнечной индустрии. Производительность высокая, продолжительный срок службы, элементы гибкие. Однако стоимость слишком высокая (по крайней мере, на нынешней стадии — пока производство не вышло на промышленный уровень).
Какие солнечные батареи лучше? Это чисто субъективный выбор. Простые расчеты показывают, что на сегодняшний день оптимальное соотношение цены качество у первых двух типов.
- Монокристаллы обычно покупают в довесок к действующей системе энергоснабжения, поэтому их стоимость окупается экономией на оплате за электроэнергию. С психологической точки зрения — такой способ подключения исключает страх остаться «без света» в случае поломки оборудования. Можно считать это предрассудком, поскольку надежность современных солнечных систем достаточно высокая. А поломка всей системы сразу мало вероятна. Элементы дублируются, можно производить ремонт без полного нарушения энергоснабжения.
- Поликристаллические батареи дороже ровно настолько, насколько и производительнее. Электростанция на поликристаллах может быть полностью автономной, то есть без вводной линии центрального энергоснабжения. Опыт использования в отдаленных местах проживания показывает, что такие системы вполне жизнеспособны, и не нуждаются в резервировании. Разве что можно установить ветрогенератор (на случай природных катаклизмов вроде затяжного дождя с пасмурной погодой в течение нескольких дней). Окупаемость 100%, если вы построили новый дом без энергоснабжения. Стоимость технических условий и монтажных работ сопоставима с покупкой комплекта на солнечных батареях мощностью 4000 Вт. А дальше — экономия в чистом виде. Вы вообще не знаете, что такое оплата электроэнергии.
- Аморфные батареи пока еще экзотика (с точки зрения стоимости). Однако технологии развиваются настолько стремительно, что через относительно короткий промежуток времени эти системы станут доступнее: вспомните ситуацию со светодиодными светильниками.
Преимущества и недостатки солнечной энергетики
Плюсы:
- На стадии использования — экологичность (почему с оговоркой: производство и утилизация такие же «грязные», как и любая другая электроника).
- После первичных вложений, полученная электроэнергия условно бесплатная (требуются некоторые средства на обслуживание по истечении срока эксплуатации).
- Возможна полная автономия: вы можете организовать энергоснабжение в местах, где даже не планируется централизованная подача электроэнергии.
- Вы не зависите от тарифной политики энергетических компаний.
- При выполнении определенных нормативов, можно «продавать» избыток электроэнергии в городские сети.
Минусы:
- Относительная дороговизна оборудования (как видно на примерах использования, это не всегда является проблемой).
- Зависимость от погодных условий (в регионах, где солнечных дней немного, использование затруднено).
- Оборудование нуждается в периодическом обновлении — присутствует естественный износ.
Правильный монтаж
Схема подключения солнечных панелей намного сложнее, чем централизованный ввод городской сети. Домашняя электростанция состоит минимум из четырех элементов.
Мы не рассматриваем примитивные системы освещения садовых дорожек на 12 вольт. Речь пойдет о полноценном энергоснабжении 220 вольт.
- Собственно фотоэлементы. Принцип работы и критерии выбора мы уже рассмотрели. Расчет мощности производится от базовой цифры 5 кВт на 1 дом. Это приблизительно 20–40 стандартных панелей площадью по 0.5 м².
- Блок управления (контроллер). Без него невозможно функционирование вашей электростанции. Как правильно выбрать контроллер заряда для солнечной батареи? Он должен поддерживать общую мощность системы энергоснабжения, обеспечивать заряд аккумуляторов и правильно распределять поток мощности при одновременном потреблении и заряде.Кроме того, на контроллере лежит ответственность за безопасность системы, в том числе и пожарная.Прибор может входить в комплект электростанции, либо приобретается отдельно.
Функционал у всех моделей стандартный. При выборе вы определяете мощность, вольтаж (12 или 24) и главный критерий — срок службы (гарантия). При выходе из строя контроллера, ваше энергоснабжение определяется емкостью аккумуляторов (пока не разрядятся). - Модуль аккумуляторных батарей. Пожалуй, второй по важности элемент в «электростанции». Он служит накопительным буфером энергосистемы. Фактически, отбор мощности происходит именно от батарей. Солнечные элементы лишь восстанавливают отданный запас энергии (заряжают АКБ). Разумеется, могут быть периоды, когда часть нагрузки ложится на фотоэлементы (если вырабатываемая энергия существенно выше затрат на зарядку). Тогда можно сказать, что ваш телевизор или холодильник питается напрямую от солнца. Перед тем, как установить солнечные батареи, необходимо рассчитать емкость аккумуляторов. Делается это просто: при входной мощности 3 кВт, ток потребления не превышает 15 А (в сети 220 вольт). На выходе 12 вольтовых батарей ток будет уже 250 А (в соответствии с законом Ома). Разумеется, такая мощность отбирается не постоянно, но для примера в расчетах мы возьмем именно эти цифры. То есть, если вы установите 5 батарей емкостью по 100 А×ч каждая, то при такой нагрузке заряд закончится через 2 часа.Разумеется, это условные цифры: в реальности существует множество поправок в расчетах. Но базовый ток и мощность исчисляются именно по такому принципу.Существуют различные батареи: кислотные, щелочные, гелевые… По-большому счету, гоняться за самыми «продвинутыми» системами нет смысла. А сэкономить можно лишь на возможности обслуживания: батареи, за которыми требуется надзор, стоят дешевле.
- Преобразователь напряжения. Вы можете отбирать мощность напрямую у АКБ, если ваши потребители рассчитаны на 12 вольтовое питание. Однако большинство электроприборов рассчитаны на 220 вольт. Поэтому на выходе устанавливается преобразователь 12–220В.К нему подключается ваша внутренняя электросеть.
Самостоятельная установка
Зная, как подключить солнечную батарею к энергоснабжению вашего дома, вы сможете сэкономить на оплате труда монтажников. Самая сложная часть — установка комплекта солнечных батарей на крыше. Если высота дома не более 2 этажей, можно выполнять такую работу самостоятельно (с помощником). Крепление выполняется с учетом погодных условий и ветровой нагрузки вашего региона.
Закончив монтаж солнечных батарей, приступаем к подключению электрики. Все фото батареи заводятся на контроллер, который управляет зарядом аккумуляторов. От АКБ можно выполнить отвод для потребителей 12 В.
Затем подключаем инвертор, и заводим его на вводной электрощиток. Автономное энергоснабжение готово.Типовая схема показывает взаимное положение элементов и порядок электрических соединений. При покупке оборудования, каждый элемент снабжается технической документацией, по которой производится сборка.
по теме
Источник: https://ProFazu.ru/elektrooborudovanie/solnechnye-batarei/ustanovka-solnechnyh-batarej.html
Эксплуатация солнечных батарей
Коэффициент преобразования солнечного света в электроэнергию называют эффективностью солнечной батареи. Его определяют при стандартных условиях тестирования фотомодуля STC. Стандартными условиями являются температура окружающей среды 250 С и 1000 Вт/м2 светового потока спектра AM 1.5G.
Для популярных поликристаллических солнечных панелей КПД составляет от 16% до 17,5%. У монокристаллических солнечных батарей этот параметр выше и составляет от 17% до 19%.
Например для поликристаллического модуля размером 1650 мм х 991 мм с КПД 15,9% мощность составит 260 Вт, а при КПД 17,1% мощность будет 280 Вт в том же размере модуля.
Факторы влияющие на эффективность работы солнечных панелей
Кроме технических характеристик выбранного вами фотомодуля на эффективность работы солнечной панели будут влиять эксплуатационные и проектные решения. Производительность солнечной станции зависит от:
- географическое положение;
- ориентация и угол наклона солнечных батарей;
- тип установки и температурные характеристики;
- затененость;
Правильная эксплуатация солнечных батарей и их долгий срок службы во многом зависит от качества проектных и монтажных работ, проведённых выбранной вами фирмой инсталлятором.
Так, например, важно учитывать температурные режимы работы солнечной установки.
Чем выше температура, тем больше падает производительность выработки электроэнергии солнечной панели в летние дни, что хорошо видно из графика вольт-амперной характеристики солнечной панели.
Поэтому для систем, смонтированных на скатную крышу важно оставлять зазор между панелью и кровлей, для обеспечения дополнительной вентиляции. Тем самым снижая температуру ячеек фотомодуля и уменьшая возможность преждевременной деградации солнечной панели.
Так же повышенная температура может привести к разрушению герметизирующих материалов, что в будущем скажется на качестве работы системы и эффективности работы солнечных панелей.
Эта же проблема с разгерметизацией возможна и для панелей с некачественной сборкой, при использовании дешевых материалов или при суровых внешних условиях эксплуатации (сильные ультрафиолетовые лучи, град, частые дожди, резкие перепады температуры для дня и ночи).
Особенно стоит обратить внимание на качество таких конструктивных элементов, как EVA пленка между стеклом и фотоячейкой и ламинирующее покрытие солнечной панели. Преждевременное изнашивание этих элементов повлечет за собой помутнение поверхности фотомодуля и ухудшение защиты от влаги паяных контактов фотоячеек.
Впрочем, качество самих паяных контактов — это залог долгой и беспроблемной работы и эксплуатации солнечной батареи. Некачественная сборка дешевых солнечных батарей, может показать себя ужу на 2-3 год эксплуатации, тем что контакты начнут интенсивно перегреваться, пока не выведут из строя всю солнечную панель.
Срок службы солнечных батарей
Срок службы солнечных батарей определяется коэффициентом деградации солнечных фотомодулей, который зависит от производителя, точнее от технологичности и качества его продукции. Большинство производителей из топ-списка Tier 1 закладывают ежегодную потерю мощности солнечной панели в размере 0,8-1% (существуют и новые премиум модели с 0,3- 0,5% коэффициентом)
.
Это гарантирует покупателю то, что через 20-25 лет его солнечная установка будет вырабатывать 80-85% от установленного номинала мощности на год производства и инсталляции солнечных панелей.
И даже после этого 25 летнего срока службы солнечная панель не выйдет сразу же из строя, она продолжит еще десятилетия работать, но уже с чуть худшими характеристиками производительности. За предполагаемый срок службы солнечных батарей, вы скорее всего поменяете 2, а то и 3 инвертора.
Гарантия производителей на механические повреждения в среднем 5 лет для среднего ценового сегмента, и 10-12 лет для премиум класса.Деградация поликристаллических солнечных панелей происходит немного быстрее чем монокристаллических.
Исходя из ихней ценовой политики, срок окупаемости систем на поликристаллических фотомодулях наступит значительно быстрее, но и быстрее потребуют замены после 30 лет эксплуатации, особенно это касается солнечных панелей среднего и низкого ценового сегмента. Поэтому мы не рекомендуем их покупать и устанавливать.
Подробнее про возможные проблемы, ускоренную PID-деградацию и влияние качества производства на эффективность работы солнечных панелей в статье
«Все нюансы покупки контрабандного, дешевого китайского и европейского б/у оборудования солнечной энергетики»
Обслуживание солнечных батарей
Эксплуатация солнечных батарей подразумевает несложный и не особо затратный процесс обслуживания солнечных панелей. Конечно это немного сложнее чем практически ничего не делать, когда ваш дом подключен к общим электрическим сетям, но и не сложнее чем с любой другой домашней техникой, которая требует технического ухода.
Если ваша установка была куплена у проверенных поставщиков, то вам, как клиенту доступен полный сервис обслуживания солнечных батарей и ремонта вашей покупки. А эксплуатация солнечных батарей не будет вызывать дополнительных проблем.
Все что вам необходимо делать — это мониторить выходные параметры вашей солнечной станции, и в случае, если инвертор показывает ошибку, или отсутствие генерации на каком-либо стринге, то связаться с представителями фирмы-инсталлятора.
То, что мы рекомендуем делать владельцам солнечной станции для повышения эффективности работы солнечных панелей:
— при длительном налипании снега, по возможности очистить от него фотомодули. Но не стоит браться за это дело сразу же после первого снегопада, т.к. сама солнечная панель при работе зимой нагревается от солнца и способна растопить небольшое налипание снега.
— при долгом отсутствие дождей и сильной запыленности или загрязнении фотомодулей самостоятельно помыть их со шланга (но не в жаркое время, когда фотомодуль сильно нагрет).
— удалять любое крупное налипание мусора на солнечную панель.
На что надо обратить внимание при уходе за солнечной станции:
— Общее состояние солнечных панелей, контактов и изоляции соединения солнечного кабеля;
— Проверка и чистка инвертора от пыли, особенно для систем с вентиляторами;
— Осмотр систем креплений на наличие коррозии или ослабленных болтовых соединений;
— Проверка работоспособности заземления;
— Если есть, то проверка целостности системы АКБ, их контактов и изоляции;
Солнечная станция — это покупка, которая прослужит вам долгие годы!
Источник: http://teplodom.net.ua/solnechnye-elektrostantsii/etapy-proektirovaniya-i-stroitelstva-solnechnyh-elektrostantsij/ekspluatatsiya-i-obsluzhivanie-solnechnyh-batarej/
Принцип работы солнечной батареи: как устроена панель
Эффективное преобразование бесплатных лучей солнца в энергию, которую можно использовать для электроснабжения жилья и иных объектов, – заветная мечта многих апологетов зеленой энергетики.
Но принцип работы солнечной батареи, и ее КПД таковы, что о высокой эффективности таких систем пока говорить не приходится.
Было бы неплохо обзавестись собственным дополнительным источником электроэнергии.
Не так ли? Тем более что уже сегодня и в России с помощью гелиопанелей “дармовой” электроэнергией успешно снабжается немалое количество частных домохозяйств. Вы все еще не знаете с чего начать?
Ниже мы расскажем вам об устройстве и принципах работы солнечной панели, вы узнаете, от чего зависит эффективность гелиосистемы. А размещенные в статье видеоролики помогут собственноручно собрать солнечную панель из фотоэлементов.
Солнечные батареи: терминология
В тематике «солнечной энергетики» достаточно много нюансов и путаницы. Часто новичкам разобраться во всех незнакомых терминах поначалу бывает трудно. Но без этого заниматься гелиоэнергетикой, приобретая себе оборудование для генерации “солнечного” тока, неразумно.
По незнанию можно не только выбрать неподходящую панель, но и попросту сжечь ее при подключении либо извлечь из нее слишком незначительный объем энергии.
Максимум отдачи от солнечной панели можно будет получить, только зная, как она работает, из каких компонентов и узлов состоит и как все это правильно подключается
Вначале следует разобраться в существующих разновидностях оборудования для гелиоэнергетики. Солнечные батареи и солнечные коллекторы – это два принципиально разных устройства. Оба они преобразуют энергию лучей солнца.
Однако в первом случае на выходе потребитель получает энергию электрическую, а во втором тепловую в виде нагретого теплоносителя.
Второй нюанс – это понятие самого термина «солнечная батарея». Обычно под словом «батарея» понимается некое аккумулирующее электроэнергию устройство. Либо на ум приходит банальный отопительный радиатор. Однако в случае с гелиобатареями ситуация кардинально иная. Они ничего в себе не накапливают.
Солнечной панелью генерируется постоянный электроток.
Чтобы преобразовать его в переменный (используемый в быту), в схеме должен присутствовать инвертор
Солнечные батареи предназначены исключительно для генерации электрического тока.
Он, в свою очередь, накапливается для снабжения дома электричеством ночью, когда солнце опускается за горизонт, уже в присутствующих дополнительно в схеме энергообеспечения объекта аккумуляторах.
Батарея здесь подразумевается в контексте некой совокупности однотипных компонентов, собранных в нечто единое целое. Фактически это просто панель из нескольких одинаковых фотоэлементов.
Внутреннее устройство гелиобатареи
Постепенно солнечные батареи становятся все дешевле и эффективней. Сейчас они применяются для подзарядки аккумуляторов в уличных фонарях, смартфонах, электроавтомобилях, частных домах и на спутниках в космосе. Из них стали даже строить полноценные солнечные электростанции (СЭС) с большими объемами генерации.
Гелиобатарея состоит из множества фотоэлементов (фотоэлектрических преобразователей ФЭП), преобразующих энергию фотонов с солнца в электроэнергию
Каждая солнечная батарея устроена как блок из энного количества модулей, которые объединяют в себе последовательно соединенные полупроводниковые фотоэлементы. Чтобы понять принципы функционирования такой батареи, необходимо разобраться в работе этого конечного звена в устройстве гелиопанели, созданного на базе полупроводников.
Виды кристаллов фотоэлементов
Вариантов ФЭП из разных химических элементов существует огромное количество. Однако большая их часть – это разработки на начальных стадиях. В промышленных масштабах сейчас выпускаются пока что только панели из фотоэлементов на основе кремния.
Кремниевые полупроводники используются при изготовлении солнечных батарей из-за своей дешевизны, особо высоким КПД они похвастаться не могут
Обычный фотоэлемент в гелиопанели – это тонкая пластина из двух слоев кремния, каждый из которых имеет свои физические свойства. Это классический полупроводниковый p-n-переход с электронно-дырочными парами.
При попадании на ФЭП фотонов между этими слоями полупроводника из-за неоднородности кристалла образуется вентильная фото-ЭДС, в результате чего возникает разность потенциалов и ток электронов.
Кремниевые пластины фотоэлементов различаются по технологии изготовления на:
- Монокристаллические.
- Поликристаллические.
Первые имеют более высокий КПД, но и себестоимость их производства выше, нежели у вторых. Внешне один вариант от другого на солнечной панели можно различить по форме.
У монокристаллических ФЭП однородная структура, они выполняются в виде квадратов со срезанными углами. В отличие от них поликристаллические элементы имеют строго квадратную форму.
Поликристаллы получаются в результате постепенного охлаждения расплавленного кремния. Метод этот предельно прост, поэтому такие фотоэлементы и стоит недорого.Но производительность в плане выработки электроэнергии из солнечных лучей у них редко превышает 15%. Связано это с “нечистотой” получаемых кремниевых пластин и внутренней их структурой. Здесь чем чище p-слой кремния, тем более высокий выходит КПД у ФЭП из него.
Чистота монокристаллов в этом отношении гораздо выше, нежели у поликристаллических аналогов. Их делают не из расплавленного, а из искусственно выращенного цельного кристалла кремния. Коэффициент фотоэлектрического преобразования у таких ФЭП уже достигает 20-22%.
В общий модуль отдельные фотоэлементы собираются на алюминиевой раме, а для защиты их сверху закрывают прочным стеклом, которое нисколько не препятствует солнечным лучам
Обращенный к солнцу верхний слой пластинки-фотоэлемента делается из того же кремния, но уже с добавлением фосфора. Именно последний будет источником избыточных электронов в системе p-n-перехода.
Принцип работы солнечной панели
При падении солнечных лучей на фотоэлемент в нем генерируются неравновесные электронно-дырочные пары. Избыточные электроны и «дырки» частично переносятся через p-n-переход из одного слоя полупроводника в другой.
В итоге во внешней цепи появляется напряжение. При этом на контакте p-слоя формируется положительный полюс источника тока, а на n-слоя – отрицательный.
Разность потенциалов (напряжение) между контактами фотоэлемента появляется из-за изменения числа «дырок» и электронов с разных сторон p-n-перехода в результате облучения n-слоя солнечными лучами
Подключенные к внешней нагрузке в виде аккумулятора фотоэлементы образуют с ним замкнутый круг. В результате солнечная панель работает, как своеобразное колесо, по которому вместе белки “бегают” электроны. А аккумуляторная батарея при этом постепенно набирает заряд.
Стандартные кремниевые фотоэлектрические преобразователи являются однопереходными элементами. Переток в них электронов происходит только через один p-n-переход с ограниченной по энергетике фотонов зоной этого перехода.
То есть каждый такой фотоэлемент способен генерировать электроэнергию только от узкого спектра солнечного излучения. Вся остальная энергия пропадает впустую. Поэтому-то и эффективность у ФЭП так низка.
Чтобы повысить КПД солнечных батарей, кремниевые полупроводниковые элементы для них в последнее время стали делать многопереходными (каскадными). В новых ФЭП переходов уже несколько. Причем каждый из них в этом каскаде рассчитан на свой спектр солнечных лучей.
Суммарная эффективность преобразования фотонов в электроток у таких фотоэлементов в итоге возрастает. Но и цена их значительно выше. Здесь либо простота изготовления с невысокой себестоимостью и низким КПД, либо более высокая отдача вкупе с высокой стоимостью.
Солнечная батарея может работать как летом, так и зимой (ей нужен свет, а не тепло) – чем меньше облачность и ярче светит солнце, тем больше гелиопанель сгенерирует электрического тока
При работе фотоэлемент и вся батарея постепенно греется. Вся та энергия, что не пошла на генерацию электротока, трансформируется в тепло. Часто температура на поверхности гелиопанели поднимается до 50–550С. Но чем она выше, тем менее эффективно работает фотогальванический элемент.
В итоге одна и та же модель солнечной батареи в жару генерирует тока меньше, нежели в мороз. Максимум КПД фотоэлементы показывают в ясный зимний день. Тут сказываются два фактора – много солнца и естественное охлаждение.При этом если на панель будет падать снег, то электроэнергию она генерировать все равно продолжит. Более того, снежинки даже не успеют на ней особо полежать, растаяв от тепла нагретых фотоэлементов.
Эффективность батарей гелиосистемы
Один фотоэлемент даже в полдень при ясной погоде выдает совсем немного электроэнергии, достаточной разве что для работы светодиодного фонарика.
Чтобы повысить выходную мощность, несколько ФЭП объединяют по параллельной схеме для увеличения постоянного напряжения и по последовательной для повышения силы тока.
Эффективность солнечных панелей зависит от:
- температуры воздуха и самой батареи;
- правильности подбора сопротивления нагрузки;
- угла падения солнечных лучей;
- наличия/отсутствия антибликового покрытия;
- мощности светового потока.
Чем ниже температура на улице, тем эффективней работают фотоэлементы и гелиобатарея в целом. Здесь все просто. А вот с расчетом нагрузки ситуация сложнее. Ее следует подбирать исходя из выдаваемого панелью тока. Но его величина меняется в зависимости от погодных факторов.
Гелиопанели выпускаются с расчетом на выходное напряжение, кратное 12 В – если на аккумулятор надо подать 24 В, то две панели к нему придется подсоединить параллельно
Постоянно отслеживать параметры солнечной батареи и вручную корректировать ее работу проблематично. Для этого лучше воспользоваться контроллером управления, который в автоматическом режиме сам подстраивает настройки гелиопанели, чтобы добиться от нее максимальной производительности и оптимальных режимов работы.
Идеальный угол падения лучей солнца на гелиобатарею – прямой. Однако при отклонении в пределах 30-ти градусов от перпендикуляра эффективность панели падает всего в районе 5%. Но при дальнейшем увеличении этого угла все большая доля солнечного излучения будет отражаться, уменьшая тем самым КПД ФЭП.
Если от батареи требуется, чтобы она максимум энергии выдавала летом, то ее следует сориентировать перпендикулярно к среднему положению Солнца, которое оно занимает в дни равноденствия по весне и осени.
Для московского региона – это приблизительно 40–45 градусов к горизонту. Если максимум нужен зимой, то панель надо ставить в более вертикальном положении.
И еще один момент – пыль и грязь сильно снижают производительность фотоэлементов. Фотоны сквозь такую “грязную” преграду просто не доходят до них, а значит и преобразовывать в электроэнергию нечего. Панели необходимо регулярно мыть либо ставить так, чтобы пыль смывалась дождем самостоятельно.
Некоторые солнечные батареи имеют встроенные линзы для концентрирования излучения на ФЭП. При ясной погоде это приводит к повышению КПД. Однако при сильной облачности эти линзы приносят только вред.
Если обычная панель в такой ситуации будет продолжать генерировать ток пусть и в меньших объемах, то линзовая модель работать прекратит практически полностью.
Солнце батарею из фотоэлементов в идеале должно освещать равномерно. Если один из ее участков оказывается затемненным, то неосвещенные ФЭП превращаются в паразитную нагрузку. Они не только в подобной ситуации не генерируют энергию, но еще и забирают ее у работающих элементов.Панели устанавливать надо так, чтобы на пути солнечных лучей не оказалось деревьев, зданий и иных преград.
Схема электропитания дома от солнца
Система солнечного электроснабжения включает:
- Гелиопанели.
- Контроллер.
- Аккумуляторы.
- Инвертор (трансформатор).
Контроллер в этой схеме защищает как солнечные батареи, так и АКБ. С одной стороны он препятствует протеканию обратных токов по ночам и в пасмурную погоду, а с другой – защищает аккумуляторы от чрезмерного заряда/разряда.
Аккумуляторные батареи для гелиопанелей следует подбирать одинаковые по возрасту и емкости, иначе зарядка/разрядка будут происходить неравномерно, что приведет к резкому снижению срока их службы
Инвертор нужен для трансформации постоянного тока на 12, 24 либо 48 Вольта в переменный 220-вольтовый. Автомобильные аккумуляторы применять в такой схеме не рекомендуется из-за их неспособности выдерживать частые перезарядки. Лучше всего потратиться и приобрести специальные гелиевые AGM либо заливные OPzS АКБ.
Выводы и полезное видео по теме
Принципы работы и схемы подключения солнечных батарей не слишком сложны для понимания. А с собранными нами ниже видеоматериалами разобраться во всех тонкостях функционирования и установки гелиопанелей будет еще проще.
Доступно и понятно, как работает фотоэлектрическая солнечная батарея, во всех подробностях:
Как устроены солнечные батареи:
Сборка солнечной панели из фотоэлементов своими руками:
Каждый элемент в системе солнечного электроснабжения коттеджа должен быть подобран грамотно. Неизбежные потери мощности происходят на аккумуляторах, трансформаторах и контроллере. И их обязательно надо сократить до минимума, иначе и так достаточно низкая эффективность гелиопанелей окажется сведена вообще к нулю.
Источник: http://sovet-ingenera.com/eco-energy/sun/princip-raboty-solnechnoj-batarei.html
Установка солнечных батарей. Как установить солнечную батарею: особенности и пошаговый процесс работы
Развитие современных технологий позволило получать альтернативную электроэнергию путем использования природных ресурсов. Солнечные батареи преобразовывают энергию солнечного источника в ресурс электропитания.
Комплекс такого устройства составляют отдельные фотоэлектрические детали, которые при соединении дают нужную мощность. Панели для получения солнечной энергии отличаются между собой по типу материала, из которого они изготовлены.
На данный момент существует пять разновидностей данных батарей, которых мы расскажем в этой статье.
Разновидности конструкций
- Наибольшее распространение на сегодняшний день получили батареи, изготовленные на основе фотоэлектрических поликристаллических элементов. Востребованность данного типа альтернативных энергоресурсов объясняется наиболее оптимальным соотношением стоимости изделия и количества получаемой с его помощью энергии.
Данную разновидность можно определить по синему цвету и кристаллической структуре образующих деталей, а установка солнечной батареи на даче не составит домовладельцу особого труда.
- Следующим видом являются панели, образованные монокристаллическими фотоэлектрическими деталями.
Они превосходят по своей эффективности предыдущий поликристаллический тип, однако и установка солнечных батарей по цене значительно выше. Отличить данный вид панелей можно по многоугольной форме заполняющих деталей.
Следует также отметить, что полностью заполнить площадь батареи такими многоугольниками достаточно сложно, поэтому в результате сооружения отдельные элементы имеют большую удельную мощность, чем батарея.
- Солнечные панели, выполненные на основе амфорного кремния, имеют сравнительно низкую эффективность работы.
Но они пользуются определенным спросом благодаря тому, что производят наиболее дешевую энергию.
- Изделия из теллурида кадмия также имеют незначительную мощность. В основе изготовления данных панелей лежит пленочная технология. Полупроводники в количестве нескольких сотен микрометров наносят на поверхность тонким слоем.
При сравнительно невысоких показателях эффективности такие батареи отличаются достаточной мощностью.
- Еще одним видом солнечных панелей являются изделия на основе полупроводника CIGS. Батареи этой разновидности также изготовляется согласно пленочной технологии, но они более эффективны, чем панели предыдущего типа.
Преимущества и недостатки
Можно выделить следующие положительные аспекты установки солнечных батарей для дома:
- Достаточно продолжительный период службы. При этом эксплуатационные показатели оборудования не ухудшаются.
- Данные технологии редко выходят из строя и соответственно практически не требуют сервисного обслуживания.
- Оборудование дома или квартиры таким альтернативным источником электроэнергии даст возможность в значительной мере сэкономить затраты на газ и электричество.
- Солнечные панели отличаются простотой в эксплуатации.
В качестве недостатков солнечных панелей следует выделить:
- высокую стоимость изделия;
- батареи уступают по эффективности традиционным источникам энергии;
- также для синхронизации энергии, получаемой от батарей и традиционной энергии, потребуется установка дополнительного оборудования, что повлечет за собой расходы;
- панели для получения солнечной энергии нельзя применять для тех приборов, которые нуждаются в большей мощности.
Принцип работы
Чтобы определиться с выбором панелей для получения солнечной энергии, следует ознакомиться с несколькими нюансами их действия:
- В первую очередь нужно понимать, что количество энергии, которую вырабатывают батареи, напрямую не может зависеть от эффективности изделия. Все виды солнечных установок способны дать одинаковую мощность. Отличие состоит в том, что для аппаратов, которые имеют большую эффективность, потребуется меньше места.
- Так, например 8 м2 панелей из монокристаллического кремния дадут 1 киловатт энергии. Для получения аналогичного результата при применении батареи из амфорного кремния понадобится уже 20 м2 изделия.
- Помимо площади батареи, на итоговый результат выработки энергии влияет и интенсивность солнечного излучения.
Установка солнечных батарей
Панели монтируются на специальную конструкцию. Благодаря ей система фотоэлементов способна выдержать атмосферные воздействия, например сильные порывы ветра, а также обеспечивается необходимый угол наклона. Такая конструкция делится на несколько видов:
- Первый вид – наклонный. Он предназначен для установки на любом типе ската крыши.
- Ко второму относится горизонтальная конструкция, которая монтируется на плоские крыши.
- Третий тип представлен свободностоящей моделью. Установка солнечных батарей на крыше данного вида также может быть произведена на кровлю любого типа.
Процесс монтажа солнечной батареи выглядит следующим образом:
- Для фиксации каркаса конструкции потребуются металлические угольники размером 50х50 мм, а также угольники для распорных перекладин толщиной 25х25 мм. Благодаря наличию данных деталей конструкция получает необходимую прочность, устойчивость и необходимый угол наклона.
- Собирается каркас с помощью болтов диаметром 6 и 8 мм.
- Под покрытие крыши конструкция подвешивается посредством шпилек размером 12 мм.
- В угольниках следует просверлить отверстия, в которых при помощи шурупов нужно закрепить панели.
- В процессе работы необходимо следить за тем, чтобы в каркасе отсутствовали перекосы. Иначе стекло может лопнуть вследствие перенапряжения.
- Установка солнечной батареи на балконе осуществляется по аналогичному принципу, за исключением того, что подвешивается такая конструкция на наклонный каркас. Его следует фиксировать между торцевой и несущей стеной, на солнечной стороне здания.
Рекомендации к процессу
Чтобы в процессе эксплуатации получить максимальный КПД панелей следует придерживаться некоторых рекомендаций:
- Как правило, батареи для получения альтернативной энергии устанавливают на крышах или стенах зданий. В отдельных случаях для монтажа конструкции применяются специальные опоры.
- Во всех случаях должны отсутствовать затемнения. Батареи следует располагать так, чтобы на них не попадала тень от деревьев, соседних домов и т.д.
- Также следует учесть, что монтаж панелей осуществляется рядами, поэтому нужно позаботиться о том, чтобы верхние ряды не затемняли нижние.
- Опасность попадания тени на изделие заключается в том, что это станет причиной частичного или полного прекращения выработки энергии. Помимо этого существует вероятность образования токов «обратной связи», что в свою очередь спровоцирует неисправность устройства.
- Для эффективности работы батареи особое значение имеет правильная ориентация относительно солнца. Это нужно для того, чтобы поверхность батареи получала максимальный поток солнечных лучей. Следует вычислять необходимую ориентацию исходя из географического положения здания. Например, если установка осуществляется с северной стороны, то панели должны монтироваться в направлении юга.
- Также в процессе установки необходимо учитывать и угол наклона изделия. Его следует определять, также ориентируясь на географическое местонахождение. Угол должен равняться широте расположения здания. Так как солнце в зависимости от сезона меняет свою высоту над горизонтом, нужно предусмотреть корректировку угла установки солнечных батарей. Как правило, выполнять коррекцию приходится примерно на 12°.
- Монтировать изделия следует таким образом, чтобы к ним был доступ. Данные конструкции не требуют особенного ухода, но время от времени их необходимо очищать от загрязнений и снега. По мере своего накопления дождевые разводы, пыль и остатки снега способны снизить эффективность установки.
Подключение
Энергию, вырабатываемую батареей, нельзя использовать напрямую в каких-либо приборах. Для получения напряжения следует установить инвертор между панелью и сетью потребления. Существует три варианта подключения солнечных батарей:
- Первый вариант схемы установки солнечных батарей предполагает автономное подключение. Данный способ является наиболее подходящим в тех местах, где отсутствует централизованная система электроснабжения. Автономную систему образуют аккумуляторные батареи с большой мощностью. Принцип их действия заключается в накапливании энергии в дневное время и солнечную погоду. После чего потоки направляются в сеть, когда наступает период недостаточного освещения.
- Вторым способом является резервное подключение. Данный вариант используется там, где есть централизованная сеть энергообеспечения. Подключение резервного характера, как правило, исполняет роль дополнительного источника энергии и применяется в случаях, когда основные источники в силу каких-либо обстоятельств выходят из строя. Также данная система может быть использована для стабилизации электрического тока, проходящего по сети, в случае снижения его характеристик.
- Третий вариант заключается в подключении к сети и предполагает выработку избыточной энергии солнца и последующего ее поступления в сеть для продажи.
Заключение
Батареи, позволяющие получать электроэнергию при помощи аккумуляции солнечной энергии, являются достаточно удобной альтернативой позволяющей экономить традиционные ресурсы.
Установка солнечных батарей своими руками посильна для каждого домовладельца, стоит лишь учесть некоторые правила и особенности рабочего процесса. Но принимая решение о монтаже такого оборудования, следует понимать, что данные батареи имеют и недостатки.
Это значительная стоимость, низкая эффективность в холодное время года и небольшая эффективность сравнительно с традиционными источниками.
Установка солнечных батарей на видео показана ниже:
Установка солнечных батарей
- 3.00 / 5 5
- 1 / 5
- 2 / 5
- 3 / 5
- 4 / 5
- 5 / 5
Источник: http://recn.ru/ustanovka-solnechnyh-batarej