Разновидности и особенности теплообменников для горячей воды от отопления
Виды и особенности теплообменников для горячей воды системы отопления
Использование эффективного теплообменного аппарата для горячей воды позволяет заметно расширить возможности оборудования, которое предназначено для обогрева помещений. От продуктивности его работы во многом зависит качественная и продолжительная работа ядра всей системы — обогревательного котла.
Теплообменник. Что это такое? Устройство системы
Теплообменник, используемый в целях отопления, является достаточно сложным техническим устройством. Данные аппараты передают энергию между двумя теплоносителями, один из которых – горячий, другой – холодный. Как правило, в качестве проводника тепла используется пар или жидкость, намного реже применяют газ.
Данное оборудование не имеет собственного теплового источника. Процесс функционирования системы осуществляется за счет использования энергии, которая идет от системы отопления дома или предприятия. Эффективность передачи тепловой энергии зависит от нескольких основных факторов:
- Разница температуры между двумя средами. Чем выше разница, тем продуктивнее функционирует система;
- Площади контакта сред и теплообменного аппарата;
- Теплопроводности материалов, из которых изготовлена сама конструкция, принимающая непосредственное участие в процессе теплообмена.
По сути теплообменником для подачи горячей воды, работающим от системы отопления, может служить любая труба, которая будет передавать тепло от источника с температурой, отличной от температуры помещения. Вы можете легко в этом убедиться если посмотрите видео, которое выкладывают на yotube мужики с прямыми руками.
Основные виды теплообменников
Среди большого ассортимента теплообменного оборудования существует всего два основных типа – пластинчатые и кожухотрубные. Второй тип из-за низкого КПД и внушительных габаритов практически исчез с рынка.
Пластинчатый теплообменник – это ряд одинаковых гофрированных пластин, установленных на жесткой металлической станине. Пластины следуют в зеркальном отражении по отношению друг к другу, разделяются они при помощи специальных металлических (стальных) и резиновых прокладок.
Чем больше пластин, чем больше их размер, тем больше площадь полезного теплообмена.
Абсолютно все пластинчатые теплообменные аппараты делятся на два типа:
Этот тип теплообменных аппаратов нашел широкое применение в регионах с жесткой водой, что делает возможным регулярную ручную чистку аппарата от накипи, мусора.
Отсутствие зажимной конструкции позволило выполнить пластинчатые теплообменники более компактными по своим габаритам.
Паяные теплообменники (неразборные)
Давайте выделим основные преимущества паяных теплообменников над разборным типом:
- Компактные габариты, небольшой вес;
- Более продолжительный срок эксплуатации оборудования;
- Высокая устойчивость к высоким давлениям и перепадам температур.
Что касается чистки паяных теплообменников, то она выполняется без разборки основной конструкции.
Если после определенного периода эксплуатации вы стали замечать, что эффективность оборудования стала заметно снижаться, то в него на несколько часов заливается определенный реагент, который справляется со всеми отложениями. Теплообменник не будет функционировать всего несколько часов, после продолжится его нормальный режим работы.
Основные материалы для теплообменных агрегатов
Основным материалом для изготовления современных теплообменных аппаратов является сталь и чугун, которые имеют высокие показатели по теплопроводности.
Теплообменное оборудование из чугуна
Теплообменное оборудование, изготовленное из чугуна, имеет следующие плюсы:
- Высокие показатели по теплопроводности. Абсолютно любой чугунный элемент быстро нагревается, передавая тепловую энергию другим носителям;
- Чугун медленно остывает. Это свойство позволяет заметно сэкономить на работе всей отопительной системы, нет необходимости постоянно включать все оборудование, когда она остынет;
- Чугун является устойчивым к накипи, он менее подвержен появлению коррозии;
- возможность расширения функциональных возможностей, подразумевающая увеличение чугунных секций после установки самого агрегата. Выполнив такую модернизацию, вы можете добиться заметного увеличения мощности.
Как и у всех аппаратов, у чугунного теплообменника есть свои минусы:
- Хрупкость. Несмотря на внушительные габариты, это оборудование боится механических повреждений;
- Низкая устойчивость к резким температурным перепадам. Они могут привести к появлению трещин и снижению мощности аппарата;
- Внушительный вес и большие габариты оборудования.
Стальной аппарат имеет ряд преимуществ над своим чугунным «собратом»:
- Повышенная теплопроводность;
- Небольшой вес;
- Ударопрочность (не боится механических воздействий);
- Устойчивость к изменениям температур внутри системы.
Среди недостатков необходимо обратить внимание на следующие позиции:
- Восприимчивость к коррозии;
- Нет возможности увеличить мощность аппарата;
- Достаточно быстрое остывание теплообменника (повышенный расход топлива).
Конструкция внутреннего теплообменника представляет собой некий бак, с помещенной в него трубкой. Чтобы изготовить такой аппарат своими руками Вам необходимо использовать:
- Металлический бак;
- Металлическую трубку;
- Анод;
- Регулятор мощности.
Для изготовления теплообменника необходимо скрутить трубку в спираль. Далее в емкости делается два отверстия – выхода. Нижний из них будет использоваться для холодной воды, верхний — для горячей.
В сети существует отличное видео как самостоятельно изготовить элементарный теплообменик, но в рамках сайта его не размещаем, тк автор использует ненормативную лексику. Посмотреть можно самостоятельно на .
Особенности монтажа теплообменного оборудования
Как только все детали аппарата будут готовы, можно приступать непосредственно к монтажу. Эта операция имеет следующую последовательность:
- Нарезание резьбы на входе и выходе теплообменного аппарата;
- Соединение входа оборудования с системой отопления при помощи специальной муфты;
- Аналогичная муфта используется для соединения выхода теплообменника с трубой ГВС.
В случае использования аппарата внутреннего типа, необходимо выполнить следующие действия:
- Внутри бака монтируется анод;
- Через низ бака подводится труба, соединенная с отопительной системой, через верх – труба забора холодной воды.
Сверху и снизу бак должен быть надежно запаян. Такие меры позволяют избежать попадания воздуха в емкость, что может негативно сказаться на теплопотерях.
Борьба с накипью в системе
Одной из основных проблем эксплуатации любых теплообменных аппаратов является образование накипи.
Слой накипи выступает как некий теплоизоляционный материал, который препятствует быстрому нагреву теплообменника до нужной температуры, из-за чего приходится затрачивать больше электрической энергии.
Сегодня производители используют в своих конструкциях отполированные особым образом трубки, изготовленные из специальных материалов.
Новейшие достижения в борьбе с накипью основаны на магнитном воздействии на воду, что позволяет снизить количество отложений. Образец установки для удаления известковых отложений показан на фото выше.
Особенности расчета теплообменника для ГВС
Выполняя расчет теплообменных аппаратов необходимо учитывать следующие параметры:
- Количество пользователей, которые будут использовать теплообменное оборудование;
- Приблизительный расход горячей воды, необходимый на одного потребителя;
- Максимальная температура теплоносителя;
- Температура воды в указанный период;
- Теплопотери, на которые, исходя из практических соображений, закладывается порядка 5%;
- Количество точек водозабора, которым относятся все имеемые в помещении краны, смесители и душ;
- Период эксплуатации: постоянный/периодический.
Как правило, производительность теплообменника рассчитывается по данным зимнего периода, когда от аппарата требуется максимальная мощность.
Как видно, каждый вид теплообменника имеет схожий принцип работы. У каждого из них есть свои преимущества и недостатки, поэтому выбор того или иного типа напрямую будет зависеть от решения конкретных задач, которые перед вами стоят.
Источник: http://bydom.ru/news/read/teploobmennik-dlya-goryachej-vody-otopleniya.html
Устройство и принцип работы теплообменника для систем отопления
Часто в отоплении мы слышим слово «теплообменник». Вещица довольна интересная и применяется в разных ситуациях. В этой статье мы поговорим с Вами о том, что такое теплообменник и какой у него принцип работы.
Что такое теплообменник?
Теплообменник — устройство, внутри которого происходит теплообмен между двумя теплоносителями, имеющими разные температуры. Устройство и принцип работы теплообменника разделим на несколько подпунктов.
Виды теплообменников
Различают несколько видов данного устройства. Все теплообменники делятся на:
- трубчатые;
- пластинчатые — неразборные (паяные), разборные.
Трубчатые теплообменники — это по сути труба большего диаметра, в которую вварены трубки меньшего диаметра.
Пластинчатые теплообменники — это устройства, состоящие из набора пластин, в которых отштампованы волнистые каналы и поверхности для прохождения жидкости. Пластины укрепляются между собой стяжками и прокладками из резины.
Пластинчатые агрегаты более легки в ремонте. Также они имеют меньшие габариты. В трубчатых агрегатах теплообмен происходит в трубе малого диаметра, находящейся в трубе большого диаметра. Поэтому их можно использовать при высоких давлениях, а пластинчатые нельзя.
Из каких материалов изготавливают теплообменники
При изготовлении теплообменников для систем отопления используют различные материалы, такие как нержавеющая сталь, силумина (сплав алюминия и кремния), латунь (используются для систем высокого давления), медь (используются в пивной промышленности, где нужно резко охладить пиво за счет эффекта большой теплопроводности) и другие.
Принцип работы теплообменника
Давайте разберемся, как работает теплообменник для отопления. Рассмотрим пластинчатый паяный теплообменник, который собран на заводе. У него есть четыре выхода, следовательно, два контура. Теплообменник служит разделителем потоков по температуре, по давлению. Таким образом, можно разделить различные теплоносители, жидкости и кислоты.
Теперь разберём принцип работы теплообменника для отопления в доме. На один контур теплообменника подключаются теплые полы, а на другой контур — теплоцентраль (подача и обратка).
Напрямую подключать центральный теплоноситель к теплым полам нельзя, так как это может привести к их порче за короткий промежуток времени. На это есть ряд весомых причин. Во-первых, в центральных теплосетях большое давление. Во-вторых, большая температура.
И, в третьих, в теплоносителе содержится много химических реактивов и растворенного железа.Для этого нам на помощь приходит теплообменник, который позволяет разделить потоки и сделать в квартире автономную систему теплого пола с маленьким рабочим давлением 1,5 бар и чистой водой.
Теплообменник состоит из трех групп пластин:
- Набранная пластина из центральной системы отопления с большой температурой и высоким давлением,
- Набранная пластина автономной системы отопления с небольшим давлением,
- Разделительная пластина, которая имеет небольшую толщину и осуществляет процесс передачи тепла от центральной системы отопления к автономной системе.
Мощность теплообменника зависит от количества пластин и их размеров. На любой теплообменник необходимо поставить очистительный фильтр, который будет удерживать различные грубые частицы (стружки, окалины, мелкие частицы). Периодически его необходимо промывать специальными средствами. В настоящее время на рынке представлен большой выбор подобных средств.
Внешний вид устройства
На любом теплообменнике нанесены технические характеристики:
- максимальная рабочая температура, например, 200 °C;
- максимальное рабочее давление, например, 30 бар;
- тестовое давление, например, 43 бара.
Также указывается страна-производитель, технический паспорт на языке производителя, схема, обозначаются контуры. В случае необходимости паспорт можно перевести на русский язык. Устройство и принцип работы теплообменника от разных производителей иногда могут немного отличаться. Но суть остается одна.
Контуры теплообменника для отопления могут располагаться как вертикально, так и диагонально. Наиболее простое устройство — это диагональное расположение. В данном случае теплообменник необходимо вмонтировать строго в вертикальном положении. Ни горизонтально, ни под острым углом, а именно вертикально.
При таком расположении горячая вода из центральной системы отопления сверху вниз будет поступать в теплообменник, передавая свое тепло автономной системе через разделительную систему.
То есть на входе это будет очень горячая вода, на выходе уже вода с упавшей температурой. В контуре же автономной системы теплоноситель будет идти снизу вверх. Внизу вода нагревается незначительно, а чем ближе к верху, тем нагрев будет сильнее.
За счет такого устройства системе будет легче работать.
Процесс подачи воды в теплообменник осуществляется на принудительной циркуляции. Теплоэлектростанция работает на своих насосах. А автономная система теплого пола в квартире будет работать на своем циркуляционном насосе.
На деле это выглядит следующим образом.
Установка теплообменника
Используя инструкцию по монтажу, необходимо правильно закрепить теплообменник. Он прямо прижимается к стене за счет специальной консоли или крепежной ленты. Также можно установить теплообменник за счет уголка, который крепится к низу теплообменника. Плюс он завяжется трубами.
Дополнительно нужно смонтировать фильтры. Должен быть хотя бы фильтр грубой очистки на контур теплоэлектростанции. Если подключается к старой отопительной системе, то необходимо два фильтра. Один внизу, другой вверху.
И, безусловно, нужны краны и американки. Последние представляют собой быстроразъемные резьбовые соединения. Как правило, обычная простая американка состоит из четырех частей: двух резьбовых фитингов, накидной гайки и прокладки.
Очень важный момент при монтаже — это диаметр подключения, потому что прибор довольно компактный. В нем небольшой объем теплоносителя. Зазор между пластинами минимальный. Желательно брать такого же диаметра, который нам нужен, или больше. Например, 1 дюйм подключения. И, конечно, лучше брать с запасом уровень мощности теплообменника. Даже на пятьдесят или сто процентов больше.Потому что на габариты это не влияет. Буквально больше на один или два сантиметра. Но зато скорость теплосъема значительно увеличивается. Особенно это важно в системах, где теплоэлектростанция дает небольшую температуру.
Например, при максимальной подаче температуры воды равной 65-70 °C, надо учесть данный факт, чтобы снять с теплоносителя максимально возможное количество теплоэнергии.
В каких сферах используется теплообменник
Сфера использования теплообменников очень обширная:
- системы отопления;
- системы охлаждения;
- при работе с химикатами;
- с солнечными коллекторами;
- для обогрева бассейнов;
- системы вентиляции;
- системы кондиционирования;
- в сфере машиностроения;
- металлургическая промышленность;
- фармацевтическая промышленность;
- пищевая промышленность (сахарная, пивная, молочная и прочие);
- автомобильная промышленность;
- химическая промышленность.
Таким образом, устройство и принцип работы теплообменников влияет на работу различных сфер, среди которых как промышленное производство, так и объекты общественного и культурного значения.
Вместе с этим их использование возможно и в частных жилых домах, где вопрос поддержки температуры стоит наиболее остро. Установка и монтаж теплообменников может быть произведён как самостоятельно, так и при помощи специалистов.
Смысл же устройства состоит в равномерном распределении тепла на помещение.
Источник: https://eurosantehnik.ru/ustrojstvo-i-princip-raboty-teploobmennikov-dlya-sistem-otopleniya.html
Теплообменник для системы отопления: основные виды и производители
Теплообменник – это главный элемент отопительной системы. Его основная роль заключается в передаче тепловой энергии от генератора к теплоносителю.
С учетом конструктивных элементов они могут изготовляться различных видов, благодаря чему каждый хозяин сможет выбрать подходящий вариант для своей отопительной системы.
Для чего необходим теплообменник?
В домашних системах отопления чаще всего можно встретить поверхностные теплообменники. В
них передача тепла происходит через поверхности металлических стенок этого аппарата.
- Максимальная реализация отопления через представленный аппарат наблюдается в конструкции котлов, работающих на газе, твердом топливе и электричестве. Лидер в отрасли отопительного оборудования Новосибирска компания Теплодар https://www.teplodar.ru/catalog/kotli/ производство котлов отопления.
- Циркуляция теплоносителя происходит по трубам, изогнутым в форме змеевика. Они расположены внутри котельного агрегата, а нагрев теплоносителя осуществляется от температуры горящего топлива.
- Горячая вода направляется в трубопровод системы отопления, а заменяет ее в теплообменнике остывший носитель тепла из радиаторов.
Даже сегодня во многих домах присутствует традиционный источник тепловой энергии – печь. Ее целесообразно использовать для дома небольшой площади. Если речь идет о многокомнатном коттедже, то ее тепловой мощности будет недостаточно.
По этой причине в частных домах отопительная система не может нормально функционировать без этого элемента. Именно благодаря ему удается превратить печь в полноценный водонагревательный котел.
Что касается габаритов и формы контура для отопления, выполненного своими руками, то они должны вписаться в размер топливной камеры печной установки.
К полученному агрегату реально подключить батареи и трубопроводы, в результате чего можно добиться эффективного обогрева здания.
Виды теплообменников
Теплообменные агрегаты могут быть различных типов. Их отличие заключается в способе передачи тепловой энергии. Выделяют следующие виды представленных аппаратов:
- Смесительные. В них передача тепловой энергии осуществляется благодаря смешению двух рабочих сред. По конструкции эти устройства намного проще, чем поверхностные. Использовать такие агрегаты получается только при условии возможности смешивания носителей тепла. Это условие и служит главным недостатком смесительных приборов.
- Поверхностные. В них осуществляется обмен энергией между рабочими
носителями тепла посредством стенок разделителя.Такие устройства подразделяются на рекуперативные и регенеративные.В рекуперативных при передаче тепловой энергии через разделительную стенку поток тепла движется в одном направлении в каждой точке стенки.
Для регенеративного теплообменного аппарата свойственно то, что носитель тепла при попеременном касании одной и той же поверхности, время от времени изменяет направление потока.
Типы рекуперативных теплообменников
Большим спросом на сегодня пользуются рекуперативные теплообменные устройства. Соглас
но конструкционному исполнению выделяют следующие виды представленных агрегатов:
Кожухотрубный
Это устройство, представляющее собой пучки труб, приваренные к кожуху и прикрепленные к трубным решеткам при помощи болтов.
Движение первого носителя тепла в межтрубном пространстве осуществляется через присутствующие на корпусе штуцера. Другой теплоноситель течет по трубам. На корпусе или крышке представленных устройств присутствуют перегородки.
В целях повышения отдачи тепла трубы подвергают процессу оребрения методом накатки или навивки ленты.
Погруженный
Его конструкция предполагает погружение одного теплоносителя в емкость с другим. Такие устройства характеризуются дешевизной и простотой.
Движение воды в межтрубном пространстве происходит с малой скоростью, результатом чего становится малая теплоотдача.
Теплообменные устройства типа «труба в трубе»
Состоит из нескольких звеньев, расположенных друг над другом и соединенных между собой. Каждое звено представляет собой конструкцию из вставленных друг в друга труб, между которыми и происходит теплообмен.
Их целесообразно эксплуатировать при высоких показателях давления и небольших расходах воды в системе.
Оросительный
Состоит из нескольких рядов труб, расположенных одна над другой, по наружной поверхности которых тонкой пленкой стекает охлаждающая их вода
Его активно применяют в холодильных установках, так как они выступают в роли конденсаторов.
Графитовый
Конструкция теплообменного устройства предполагает наличие блоков из графита, уплотненных между собой при помощи прокладок из резины и
зафиксированных крышками.
Графит считается прекрасным проводником тепловой энергии. Для устранения пористости происходит его обработка специальными составами.
Используется для химически агрессивных жидкостей.
Пластинчатый
Это устройство изготовлено из пластин, поверхность которых отштампована специальным методом. Результатом такой работы становится образование каналов, по которым движется теплоноситель.
Между собой пластины уплотнены.
Процесс изготовления такого устройства отличается своей простотой, его легко чистить, он обладает высокой теплоотдачей. Минус – не выдерживает высокое давление.
Пластинчато-ребристый
Состоит из системы разделительных пластин, между которыми находятся ребристые поверхности — насадки, присоединенные к пластинам методом пайки в вакууме.
Предназначены для теплообмена между неагрессивными жидкими и газообразными средами в интервале температур от плюс 200 °C до минус 270 °C.
Обладает малым весом и размерами, высокой прочностью и жесткостью.
Оребренно-пластинчатый
Его конструкция предполагает наличие оребренных панелей маленькой толщины, производство которых происходит при помощи высокочастотной сварки.
Благодаря такой конструкции и применяемым материалам удается достичь высокого температурного режима теплоносителя, малого гидравлического давления, высокого КПД, продолжительного срока эксплуатации, низкой стоимости.
Целесообразно его использовать при утилизации тепла газов.
Спиральный
Оснащен двумя каналами, которые навиты в форме спирали около основной разделительной перегородки. Их цель – нагрев и охлаждения жидкостей, обладающих высоким показателем вязкости.
Устройство и принцип работы
Современные модели теплообменного устройства имеют несколько частей. Для каждой характерна своя важная роль:
- неподвижная плита – к ней крепят все подводимые патрубки;
- прижимная плита;
- пластины, оснащенные вставленными прокладками уплотнительного типа;
- верхняя и нижняя направляющие;
- задняя стойка;
- шпильки с резьбой.
Такая уникальная конструкция теплообменного устройства позволяет достичь максимально эффективной компоновки всей поверхности эксплуатируемого агрегата.
Популярные производители
На современном рынке эта продукция представлена в широком ассортименте. Существуют многочисленные модели и производители. Основные критерии выбора:
- надежность и качество;
- ремонтопригодность;
- цена;
- гарантии;
- запасные детали.
Смотрите видео о том, как сделать теплообменник своими руками
Рассмотрим подробнее, кто входит в рейтинг лучших изготовителей системы, и цены на них:
- Кролл. Производимые модели теплообменников – серии S, SKE, H, SL, NKA, NK, A. Стоимость от 200000 до 700000 рублей.
- Дракон-энергия. Модели теплообменных устройств: Др 30, Др 50, Др 100, Др 150, Др 200, Др 500, Др 1000. Цена от 60000 до 400000 рублей.
- SWEP – производит теплообменники серии GX, GC, GL, GD, GF, GW. Стоимость от 45000 до 600000 рублей.
- Ридан. Производит модели теплообменных устройств серии НН. Цена от 40000 до 800000 рублей.
Перед выбором необходимо обязательно ознакомиться с характеристиками каждой модели.
Теплообменное устройство— это «сердце» любой отопительной системы. Только при его наличии можно получить качественный обогрев дома. Благодаря широкому разнообразию этого отопительного аппарата, очень просто подобрать подходящий для своей системы.
Источник: https://klimatlab.com/otoplenie/sistema/teploobmennik-dlya-otopleniya.html
Теплообменники для горячего водоснабжения
Теплообменником называется важный тепловой элемент отопительной системы. Его важность обуславливается тем, что именно он производит нагрев и передачу тепла между генератором и всеми приборами системы отопления. Ввиду различных конструктивных особенностей теплообменники делятся на виды. Исходя от этого, потребителю намного легче определиться с тем, какой прибор ему потребуется.
Как выглядит теплообменник
Предназначение и принцип работы
Модели теплообменных устройств для частного дома и квартиры отличны друг от друга. В домах чаще всего используются поверхностные теплообменники. Основная особенность теплообменников этого типажа заключается в их способности передавать тепло прямиком через металлические стенки устройства.
Максимальный уровень КПД такого прибора можно наблюдать, например, в котлах, работающих на электричестве, газу и любом твердом топливе. Внутри котла для циркуляции теплоносителя находятся трубки в форме змеевика. Нагревается теплоноситель непосредственно за счет горящего внутри топлива. Нагретый теплоноситель проходит по всей отопительной системе и возвращается в змеевик.
В некоторых частных домах и в наше время используются печи как основной источник тепла. Для дома с большой площадью нет смысла использовать такое устройство, однако, для небольших строений – это наилучший вариант. Для того чтобы качественно отопить целый коттедж, тепловой мощности печи будет чрезвычайно мало.
Для обогрева огромного дома при помощи печи следует использовать теплообменник. Прибор позволит нагреть теплоноситель до необходимого уровня, а радиаторы разнесут это тепло по всем помещениям коттеджа.
При использовании теплообменника площадь дома не имеет значения. Устройство повышает КПД отопительной системы в несколько раз.
Строение
Схема строения теплообменника для горячего водоснабжения
Любое теплообменное устройство состоит из нескольких деталей. Каждая деталь играет свою роль:
- передняя плита (опорная) – на ней закрепляются все составляющие компоненты и подводимые патрубки;
- прижимная плита – вспомогательная плита, закрывающая теплообменник с обратной от передней плиты стороны;
- поддерживающая колонна – придерживает прибор со стороны прижимной плиты;
- нижняя и верхняя направляющие (балки) – выполняют опорную функцию;
- шпильки фланцевого соединения – фиксируют вводные и выводные трубы;
- пакет пластин – это пластины, необходимые для теплообмена (между пластинами находится уплотнитель);
- задняя стойка – выполняет опорную функцию в задней части теплообменника;
- стяжные болты – скрепляют все составляющие части от задней стойки до передней плиты;
- пята – части, выполняющие роль поддерживающих ножек.
Такая конструкция позволяет пропускать тепло через весь прибор, при этом его не теряя. При ином строении достижение максимального уровня КПД невозможно.
Виды
За все время существования теплообменников была придумана и модернизирована не одна их разновидность. Ниже приведены наиболее популярные разновидности приборов.
Смесительный
Смесительный тип теплообменников имеет несложное строение, в котором передача тепла происходит посредством смешивания двух рабочих сред, например, при смешении жидкости и водяного пара. Очень важно, чтобы среды были однородными.
Внешний вид смесительного теплообменника
Прибор не будет работать, если отсутствует одна или обе рабочие среды. Тоже можно сказать, если в теплообменнике будут фигурировать не однородные вещества, например, вода и газ.
Поверхностный
Поверхностный вид теплообменников представляет собой сложное устройство, работающее за счет перемещения теплоносителя между стенками разделителя.
Внешний вид поверхностного теплообменника
Такие теплообменники делятся на два подтипа: регенеративные и рекуперативные. В случае с первым подтипом теплообменник попеременно касается одной и той же стенки нагревательного устройства, меняя, время от времени, направление потока. При этом следует заметить, что теплоноситель касается всех точек поверхности без исключения.
Поверхностные теплообменники рекуперативного подтипа имеют всего одно направление потока. За нагрев отвечает постоянная циркуляция теплоносителя от одной разделительной точки прибора к другой.
Погружной
Погружной теплообменник обладает самой простой конструкцией и имеет весьма приемлемую стоимость. Главным недостатком этого прибора является его слабая теплоотдача.
Принцип работы погружного теплообменника строится на погружении одного теплоносителя в емкость с другим. При этом теплообменники находятся в разных сосудах.
Внешний вид погружного теплообменника
Кожухотрубный
Кожухотрубный теплообменник состоит из набора трубок, приваренных к кожуху. Массивные болты закрепляют эти трубки на трубных решетках, образуя, тем самым, цельный прибор.
Как выглядит кожухотрубный теплообменник
За работу теплообменника отвечают два теплоносителя: первый – движется в межтрубном пространстве, через штуцера в корпусе; второй теплоноситель проходит непосредственно по трубам.
Для того чтобы повысить КПД этого типа устройств, иногда выполняют оребрение. Такая операция проводится двумя способами: навивкой ленты или накаткой.
Оросительный
Конструктивно этот тип теплообменника представляет собой последовательно идущие друг за другом ряды из труб. По поверхностям (внешним) этих труб постоянно стекает охлаждающая вода.
Принцип работы оросительного теплообменника
Такую конструкцию практично использовать в холодильных установках, ввиду того, что оросительный теплообменник может быть конденсатором, то есть не требуются излишние подключения.
«Труба в трубе»
Конструктивно теплообменник «труба в трубе» имеет несколько звеньев, которые располагаются в строгой последовательности друг над другом. Каждое звено при этом соединяется с соседним.
Теплообменник «труба в трубе»
Звенья, в свою очередь, имеют устройство с конструктивными особенностями: каждое звено представляет собой набор труб, проходящих внутри друг друга. Именно между этими трубками и происходит обмен тепла.
Наиболее правильно будет использовать такой тип теплообменника при достаточно высоких показателях давления в системе. Также следует учесть то, что расход воды в системе должен быть минимальным.
Пластинчатый
Как видно из названия, устройство такого типа состоит из пластин. Поверхность каждой пластины отштампована по специализированной методике. Из-за штамповки образуются каналы, по которым в дальнейшем протекает теплоноситель.
Большой пластинчатый теплообменник
Связь между пластинами имеет значительное уплотнение. Благодаря этому существует 100-процентная гарантия герметичности.
Во время эксплуатации устройство не требует к себе особого внимания. Для изготовления пластинчатого теплообменника не обязательно обладать специализированными знаниями или навыками.
Кроме прочего, устройство легко чистится от различных загрязнений, но не способно выдерживать массивного гидравлического давления.
Спиральный
В спиральном теплообменнике присутствует два канала, имеющие форму спирали. Спираль навита прямо у основной перегородки.
Спиральный теплообменник для водоснабжения
Спиральные теплообменники имеют достоинство, состоящее в возможности охлаждения и нагрева разнообразных жидкостей с высоким показателем вязкости. Следует отметить, что это единственный тип теплообменников, способный без проблем работать с жидкостями подобной консистенции.
Оребренно-пластинчатый
В конструкции этого теплообменника используются пластины, созданные при помощи высокочастотной сварки. Каждая такая пластина (тонкая панель) проходит процедуру оребрения, что и придает прибору уникальные особенности.
Оребренно-пластинчатый теплообменник
Благодаря конструктивным особенностям, оребренно-пластинчатый теплообменник:
- сокращает гидравлическое давление в системе;
- позволяет нагреть теплоноситель до максимально возможного уровня;
- повышает общее КПД отопительной системы;
- увеличивает срок службы всей системы.
Пластинчато-ребристый
Этот вид прибора представляет собой набор пластинок, скрепленных между собой ребренными поверхностями. Сами ребренные поверхности представляют собой насадки, спаянные с пластинами методом вакуумной пайки.
Пластинчато-ребристые теплообменники способны сдерживать температуру от 200 до 270 градусов по Цельсию. Максимальная работоспособность теплообменника гарантирована только при теплообмене между жидкими и газообразными веществами в неагрессивном состоянии.
Производители
Изделия лидирующих производителей различаются по нескольким критериям:
- цена;
- надежность и качество;
- возможность ремонта прибора;
- наличие запасных деталей;
- гарантия (в том числе, гарантия надежности и качества).
Все приводимые ниже производители зарекомендовали себя среди потребителей как лучшие.
Кролл
Страна – Германия.
Стоимость устройств колеблется в диапазоне от 200000 до 700000 рублей.
Всего существует 7 серий производимой продукции: S, SKE, H, SL, NKA, NK, A.
Компания Кролл имеет высокий уровень популярности среди потребителей за счет того, что производит исключительно качественную продукцию.
Ридан
Страна – Россия.
Стоимость устройств колеблется в диапазоне от 40000 до 800000 рублей.
Производится только одна серия теплообменных приборов: HH.
Ввиду того, что компания занимается производством всего одной разновидности теплообменных приборов, ее нельзя назвать универсальным производителем.
SWEP
Страна – Швеция.
Стоимость продукции колеблется в диапазоне от 45000 до 600000 рублей;
Всего существует 6 серий теплообменников: GX, GC, GL, GD, GF, GW.
SWEP имеет большое влияние на рынке, благодаря оптимальному соотношению цены и качества своей продукции.
Дракон-энергия
Страна – Украина.
Стоимость изделий колеблется в районе от 60000 до 400000 рублей (самая дешевая продукция среди лидирующих компаний).
Теплообменники производятся 7 серий: Др 30, Др 50, Др 100, Др 150, Др 200, Др 500, Др 1000.
Продукция компании пользуется большим спросом из-за активного производства приборов различных видов.
про паяный теплообменник
Актуальные подробности про паяный пластинчатый теплообменник системы горячего водоснабжения можно узнать из этого видео.
С уверенностью можно сказать, что теплообменное устройство является сердцем отопительной системы. Без него невозможно контролировать уровень нагрева теплоносителя и другие важные факторы.
При выборе устройства следует проявить некоторую осторожность ввиду существования десятков различных производителей. В первую очередь, следует присмотреться к продукции лидирующих компаний.
Во время выбора необходимо внимательно изучать каждый аспект характеристик той или иной модели теплообменника. Следует придерживаться правила: устройство должно полностью удовлетворять требованиям потребителя.
Теплообменник в системе отопления дома
Источник: https://aqueo.ru/vodosnab/teploobmenniki-goryachego-vodosnabzheniya.html
Теплообменник для ГВС от отопления — виды и варианты установки
Наличие теплой воды — нормальное требование для комфортного существования. Вот только далеко не везде есть возможность подключиться к централизованному источнику горячей воды.
В большинстве частных домов и в некоторых многоэтажках приходится заботиться об этом самостоятельно. Один из вариантов — использовать теплообменник для горячей воды от отопления.
Во всяком случае, в отопительный сезон будете с горячей водой.
Принцип работы
Теплообменники для приготовления воды ГВС работают по бесконтактному принципу. Устройство их может быть разным, но принцип действия не отличается — работают они по принципу теплопередачи.
Есть нагретый теплоноситель (в данном случае из системы отопления), который подается в трубы/каналы теплообменника. Горячий теплоноситель отдает часть тепла трубкам, по которым течет. По другим, параллельно расположенным каналам, течет вода, которую необходимо нагреть.
Контактируя с нагретыми теплоносителем стенками, она нагревается. Именно так и работает теплообменник для горячей воды от отопления.
Принципиальная схема использования теплообменника для подготовки горячей воды от отопленияЧтобы нагрев был эффективным, теплообменник должен быть сделан из материала с высокой теплопроводностью. Обычно это металлы — медь, нержавеющая сталь. Медь — дорогой металл, но имеет отличную теплопроводность. Нержавеющая сталь хуже проводит тепло, но за счет прочности стенки могут быть очень тонкими, что делает такие теплообменники тоже эффективными.
Как использовать теплообменники для получения ГВС от отопления
Есть несколько возможностей нагревать воду для бытовых нужд при помощи теплообменника и отопления:
- Нагрев проточной воды. Недостаток — ограниченные возможности по расходу горячей воды, отсутствие запаса, сложность реализации поддержания стабильной температуры (надо организовывать узел подмеса или ставить контроллер). Достоинства — требуется мало места, малое количество компонентов.
- Нагрев воды в какой-то емкости. Теплообменник для горячей воды от отопления опускается в какую-то емкость, заполненную водой. По сути, это уже бойлер косвенного нагрева. Но в нем установлен теплообменник и подключается он к ГВС. Но речь сейчас не о них, так что не в этой статье.
Самый элементарный теплообменник — труба, по которой бежит теплоноситель
Виды теплообменников для горячей воды
Вообще, существует много конструкций теплообменников, так как они используются часто, в различных устройствах. Поговорим подробнее о наиболее доступных, надежных и эффективных. Для бытовых целей используются два вида:
- Пластинчатые (паянные или разборные).
- Кожухотрубные.
Теплообменник для горячей воды от отопления: в частном секторе используются два типа — пластинчатые (слева) и кожухотрубные (справа)
В них тепловые среды — теплоноситель от системы отопления и вода из ХВС (холодного водоснабжения) не смешиваются. Каналы, по которым они протекают, между собой никак не связаны. Поэтому при закачке на подогрев воды питьевого качества, такую же и получаем на выходе.
Пластинчатые
Пластинчатый теплообменник для горячей воды от отопления состоит из нескольких металлических пластин с выдавленными ходами.
Собираются они в зеркальном отражении, так что получаются изолированные друг от друга каналы для циркуляции жидкостей. Пластины изготавливают методом штамповки из листового металла. Толщина — до 1 мм.
Металл, как правило, нержавеющая антикоррозионная сталь, но есть и из титана, специальных сплавов.
Каналы на пластинах чаще всего делают в виде равносторонних треугольников с разными углами. Чем острее угол, тем быстрее движется жидкость, чем тупее, тем больше сопротивление и медленнее движение.
По схеме движения сред по каналам, пластины бывают одноходовыми и многоходовыми. В первых направление движения сред не меняется от начала и до конца.
Еще их отличительная особенность — среды движутся в противоток (для большей эффективности).
В многоходовых пластинчатых теплообменниках каналы расположены так, что среды меняют направление движения по нескольку раз. Строение у них более сложное, стоимость выше, но они способны отбирать максимум тепла (высокий КПД). В многоходовых теплообменниках можно добиться небольшой разницы в температурах обоих жидкостей.
По способу соединения бывают двух типов — разборными и паянными. Пластины разборных пластинчатых теплообменников соединяются при помощи специальных эластичных прокладок (из резины, фторопласта). Для обеспечения герметичности каналов, они стягиваются металлическими стержнями-стяжками.
Для стабилизации в конструкции присутствуют две массивные плиты — неподвижная и подвижная. На неподвижной закреплены стержни, на них нанизываются пластины с ходами. Чем их больше, тем больше мощность, больше передаваемая теплота.
Последней устанавливается подвижная пластина, на стяжки накручиваются гайки, зажимаются до герметичности каналов. Благодаря такой конструкции, эти теплообменники можно разобрать, прочистить, добавить или убрать пластины. И в этом достоинство этой конструкции.
Недостаток — пластинчатый теплообменник для горячей воды от отопления имеет больший вес и размер (если сравнивать с паянными).Два вида пластинчатых теплообменных устройств — паяный (слева) и разборной (справа)
Паянные пластинчатые теплообменники собираются на заводе. Нержавеющие пластины свариваются в аргонной среде, что позволяет избежать коррозии в местах сварки. Паянные пластинчатые теплообменники неразборные, в связи с чем могут возникнуть сложности с промывкой. Их преимущество — более компактные размеры и меньший вес, так как нет необходимости в стабилизирующих плитах.
У каждого теплообменника есть входы и выходы для подключения теплоносителя (от отопления) и воды. Эти выходы могут быть в виде фланца, трубы под сварку, резьбового соединения. Они позволяют подключить теплообменник для горячей воды от отопления к трубам любого типа.
Кожухотрубные
Кожухотрубные теплообменник для горячей воды от отопления проще по конструкции, но менее эффективны, из-за чего, для обеспечения необходимой температуры, должны иметь солидные размеры.
Низкая эффективность, большие размеры и материалоемкость — это причины, по которым в быту они используются реже. Но их конструкция надежней — они выдерживают суровые условия эксплуатации.
Так что в промышленности чаще применяется именно этот вид теплообменных агрегатов.
Кожухотрубные теплообменники представляют собой трубу-кожух, внутри которой уложены более мелкие трубки. Обычно это медные трубки, но могут быть и из другого материала, причем не только из металла.
Кожухотрубный теплообменник для ГВС — устройство и принцип работы
По тонким трубкам движется нагреваемая вода, которая подается затем в краны. Теплоноситель из системы отопления движется по пространству внутри кожуха, которое не занято трубками с подогреваемой водой. Направление движения — в противоток. Этим обеспечивается большая теплоотдача. Но стоит сказать, что общее КПД таких установок ниже, чем пластинчатых.
Схемы подключения
Кроме типа теплообменника, надо выбрать еще и способ его подключения. Есть несколько типовых схем. В любом случае, два выхода подключаются к отоплению, один — к холодному водоснабжению, один — к разводке горячей/подогретой воды.
Параллельная (стандартная)
В самом простом случае теплообменник для горячей воды от отопления подключают параллельно существующей системы. Такая схема проще всего в реализации, но для достаточного нагрева необходимо, чтобы теплоноситель двигался активно. То есть, обязательно в подаче теплоносителя наличие циркуляционного насоса. В системах с естественной циркуляцией такой тип установки малоэффективен.
Теплообменник для горячей воды от отопления: схема параллельного подключения
При монтаже, подача теплоносителя всегда подключается к верхнему патрубку, а обратка — к нижнему. При подключении воды ситуация противоположная — холодная вода подключается в нижний патрубок, гребенка горячей — к верхнему.
Схема обвязки теплообменника для ГВС от отопления
Простейшая схема обвязки содержит отсечные краны на всех четырех патрубках — для возможности отключения, чистки, технического обслуживания. Также на входе от отопления устанавливается грязевик — фильтр с мелкой сеткой.
Так как зазоры в теплообменнике совсем небольшие, попадание окалины либо других загрязнений может вызвать закупорку каналов. Такой же фильтр желательно установить на вводе холодной воды — дольше будет работать оборудование.
Данную схему можно усовершенствовать, сделав рециркуляцию горячей воды в гребенке ГВС (закольцовывают после последней точки разбора).При таком построении, тепло неиспользуемой горячей воды не пропадает, а используется: вода из гребенки ГВС подмешивается к холодной воде из водопровода. На подогрев поступает уже не совсем холодная, а теплая.
Теплообменник для горячей воды от отопления только доводит ее до требуемой температуры.
Обвязка с контуром рециркуляции ГВС
При разборе нагретой воды, на подогрев идет преимущественно вода из трубы холодного водоснабжения. Когда разбора нет, по кругу насос «гоняет» теплую, нагрузка на котел отопления совсем небольшая.
Управление температурой происходит при помощи датчика и регулирующего клапана, установленного на обратке (можно и на подачу поставить). Показания с датчика (температура воды в выходной ветке на ГВС) поступают на прибор управления. По результатам сравнения с выставленными данными, регулируется интенсивность потока теплоносителя, тем самым регулируется интенсивность нагрева.
Двухступенчатая
Всем хороши описанные выше схемы, кроме того, что для нагрева должен проходить большой поток теплоносителя. Иначе вода не успеет прогреться.
Второй недостаток — приходится «заворачивать» поток теплоносителя из системы отопления. При большом расходе и недостаточной мощности отопительного котла, в холода могут быть заметны понижения температуры.
Для более рационального использования тепла придумали двухступенчатую систему подключения теплообменников.
Один из вариантов двухступенчатого подключения теплообменников
В данном случае первичный нагрев идет от обратного трубопровода отопления. Тем самым более рационально используются энергоносители.Доводится температура до нормы при помощи повторного нагрева, но уже от теплоносителя, который идет на подачу. Подключить теплообменник для горячей воды от отопления можно параллельно — как на верхней схеме.
Второй вариант представлен на нижней — в разрыв подающей трубы от системы отопления.
Вариант двухступенчатого нагрева
При использовании второй схемы, первичный нагрев происходит от обратки. Нагретая в этом теплообменнике вода подается на второй, установленный на подаче. Тут она доводится до нужной температуры и уходит потребителю.
Есть еще схема двуступенчатого нагрева с использованием тепла от рециркуляции горячей воды. В этом случае рационально используется тепло ранее нагретой воды.
Первичный нагрев — от рециркуляции горячей воды, окончательный — от системы отопления
При использовании любой из этих схем, нагрузка на котел значительно снижается. Утилизируется то тепло, которое раньше не использовалось. Тем самым эти схемы помогают экономить на энергоносителях.
Для нормальной работы теплообменника, подключенного по любой из схем, при монтаже необходимо соблюдать технологические требования. Обязательно соблюдение уклона труб ГВС в сторону точек разбора.
Если трасса проходит над дверью, в высшей точке ставят воздухоотводчик. Кроме того, при длинной трассе, необходимы дополнительные автоматические или ручные устройства для сброса воздуха (воздухоотводчики).В противном случае могут быть проблемы с подачей воды.
Источник: https://teplowood.ru/teploobmennik-dlya-gvs-ot-otopleniya.html